US009158533B2

a2 United States Patent 10) Patent No.: US 9,158,533 B2
Farchi et al. 45) Date of Patent: Oct. 13,2015
(54) MANIPULATING SOURCE CODE PATCHES 7,603,668 B2* 10/2009 Zweifel etal. 717/174
7,870,547 B2* 1/2011 Schuftetal. 717/168
. : : : . 7,886,272 B1* 2/2011 Episkopos et al. 717/124
(75) Inventors: Eﬁaln(];) a'gel F;rc.?l’ fi‘rdgs I(;Iam;{(IL)f’ 8015220 BL* 9/2011 .. 707/821
el Gordon, Haifa (IL); Nadav Yose 8,201,384 B2* 10/2012 .. 717/124
Har’El, Misgav (IL); Moran Shochat, 8,341,600 B2* 12/2012 .. 717/126
Zichron Ya’akov (IL) 8,479,161 B2* 7/2013 .. 717/124
8,561,010 B2* 10/2013 I 717/101
(73) Assignee: International Business Machines 8,627,287 Bz: 12014 Fanning etal. . - 7177124
Corporation, Armonk, NY (US) 8,694,958 Bl 4/2014 Potter et al. 717/109
P > > 2003/0131313 Al* 7/2003 Flanagan 715/500
. 2003/0163801 Al* 8/2003 Thames et al. 717/123
(*) Notice: Subject to any disclaimer, the term of this 2006/0048130 Al* 3/2006 Napier etal. 717/168
patent is extended or adjusted under 35 2006/0080656 Al* 4/2006 Cainetal. T17/174
U.S.C. 154(b) by 149 days. 2006/0101457 Al* 5/2006 Zweifel et al. 717174
2006/0117310 Al* 6/2006 Daniels et al. 717/168
(21) Appl. No.: 13/350,844 2007/0038991 Al* 2/2007 Schuftetal. 717/172
’ (Continued)
(22) Filed: Jan. 16, 2012
OTHER PUBLICATIONS
(65) Prior Publication Data Raymond PL. Buse and Westley R. Weimer. 2008. A metric for
ul. 18, software readability. In Proceedings of the 2008 international sym-
US 2013/0185696 Al Jul. 18, 2013
posium on Software testing and analysis (ISSTA ’08). ACM, New
(51) Int.Cl. York, NY, USA, 121-130.*
GOG6F 9/144 (2006.01) (Continued)
GOG6F 9/145 (2006.01)
GOG6F 9/445 (2006.01)
(52) US.CL Primary Examiner — Don Wong
CPC .o GO6F 8/71 (2013.01) Assistant Examiner — Anibal Rivera
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Ziv Glazer, Adv
CPCccoee. GO6F 8/70; GOOF 8/72; GOGF 8/443;
GO6F 11/3466; GOO6F 11/3476; GOGF 11/3447; (57) ABSTRACT
GO6F 11/3616; GOG6F 11/3676; GOGF 11/3696;
GO6F 8/71; GO6F 8/60; GO6F 8/65; GO6F A computerized apparatus, a computer-implemented method
8/67; GO6F 8/68; GO6F 8/30; GOGF 8/437; and a computer program product for manipulating source
GO6F 21/14; GO6F 21/125; GO6F 11/1433; code patches. The apparatus comprising a processor that is
GO6F 9/45504; GOG6F 8/73 configured to: obtain a source code patch comprising plural-
See application file for complete search history. ity of source code modification instructions with respect to a
source code and to automatically split the source code patch
(56) References Cited into plurality of sub-patches, wherein applying the plurality

U.S. PATENT DOCUMENTS

6,594,822 B1*
6,698,014 Bl *

7/2003 Schweitz et al. 717/140
2/2004 Rechterccoovevevinnns 717/137

OBTAIN A SET OF PATCHES
210

[COMPUTE COHERENCY MEASUREMENT FOR EACH PATCH |~

A PATCH WITH A COHERENC'
MEASUREMENT BELOW A COHERENGY
CRITERIA EXISTS?

OUTPUT
NEW SET OF
PATCHES

| SELECT A PATCH FCR SPLITTING

SPLIT THE SELECTED PATCH INTO TWO OR MORE SUB- 250
PATCHES SUCH THAT THE TWO OR MORE SUB-PATCHES
MAXIMIZE A TOTAL COHERENCY MEASUREMENT

255
| ENSURE NO CYCLIC DEPENDENCIES k\l

ARE INTRODUCED

280
REPLACE PATCH IN THE SET WITH THE TWO OR MCRE
SUB-PATCHES

+ 270
COMPUTE COHERENCY MEASUREMENT FOR THE TWO OR
MORE SUB-PATCHES

of sub-patches on the source code in an order is equivalent to
applying the source code patch.

19 Claims, 4 Drawing Sheets

212

[COMPUTE NUMBER OF MODIFICATION IN THE PATCH
¥ 214

| COMPUTE PRCXIMITY OF THE MODIFICATICNS IN THE PATCH

216

| COMPUTE TEXTUAL SIMILARITY BETWEEN THE MODIFICATIONS IN THE PATCH r\l
218

| COMPUTE DEPENDENCIES BETWEEN THE MODIFICATIONS IN THE PATCH r\)
v 220

| COMPUTE SHARED DEPENDENCIES OF THE MODIFICATIONS IN THE PATCH r\)
* r_f)ﬂ

| DETERMINE A COHERENCY MEASUREMENT

US 9,158,533 B2

Page 2

(56)

2007/0220479
2007/0261047
2008/0178167
2008/0216065
2008/0229282
2008/0320457
2009/0144698
2009/0210860
2009/0249299
2009/0271768
2010/0138822
2010/0180258
2010/0241469

References Cited

U.S. PATENT DOCUMENTS

Al

Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*

9/2007
11/2007
7/2008
9/2008
9/2008
12/2008
6/2009
8/2009
10/2009
10/2009
6/2010
7/2010
9/2010

Hughes

Sahetal. ..ocooorvvrrnnnn. 717/168
Sriram et al. . 717/169
Oka .o ... 717/168
deVries et al. e 7177122
Kingetal. 717/146
Fanning et al. 717/120
Sutherland et al . 7177123
Farchi etal. 717/125
Goodsonccovevenine, 717/125
Miyazaki 717/168
Takahashi . 717/124
Weigertccoevevvnnene 717/123

2010/0242028 Al* 9/2010 Weigertcooevvennn. 717/131

2011/0066999 Al* 3/2011 Rabinovich etal. .. 717/104

2011/0321007 Al* 12/2011 Marumetal. 717113

2012/0117549 Al* 5/2012 Doyleetal. 717/147
OTHER PUBLICATIONS

* cited by examiner

Benjamin Close, “Splitting a patch”, Clear chain blog post, Nov. 13,
2008.*
Linux Kernel, “How to get your change into the Linux Kernel”, Linux
documentation 2007.*

Andreas Grunbacher, “How to survive with many patches”, SuSe
Labs publication, Jun. 12, 2005.*

Wikipedia, the free encyclopedia, “patch (Unix)”, Sep. 2011. URL://
http://en.wikipedia.org/wiki/Patch_ %28Unix%29.

U.S. Patent Oct. 13, 2015 Sheet 1 of 4 US 9,158,533 B2

FIG. 1

U.S. Patent Oct. 13, 2015 Sheet 2 of 4 US 9,158,533 B2

200

OBTAIN A SET OF PATCHES

* 210

COMPUTE COHERENCY MEASUREMENT FOR EACH PATCH }’\J

299
L~
A PATCH WITH A COHERENCY OUTPUT
MEASUREMENT BELOW A COHERENCY NEW SET OF
CRITERIA EXISTS? PATCHES

230
240

SELECT A PATCH FOR SPLITTING

L]

SPLIT THE SELECTED PATCH INTO TWO OR MORE SUB- 250
PATCHES SUCH THAT THE TWO OR MORE SUB-PATCHES [
MAXIMIZE A TOTAL COHERENCY MEASUREMENT

255
ENSURE NO CYCLIC DEPENDENCIES [~
ARE INTRODUCED

* 260

REPLACE PATCH IN THE SET WITH THE TWO OR MORE
SUB-PATCHES

Y 270

COMPUTE COHERENCY MEASUREMENT FOR THE TWO OR [—~J
MORE SUB-PATCHES

FIG. 2A

; N
—
N

COMPUTE NUMBER OF MODIFICATION IN THE PATCH

v 214

COMPUTE PROXIMITY OF THE MODIFICATIONS IN THE PATCH —
17 216

COMPUTE TEXTUAL SIMILARITY BETWEEN THE MODIFICATIONS IN THE PATCH ||
Y 218

COMPUTE DEPENDENGIES BETWEEN THE MODIFICATIONS IN THE PATCH |
Y 220

COMPUTE SHARED DEPENDENCIES OF THE MODIFICATIONS IN THE PATCH |
+ 224

DETERMINE A COHERENCY MEASUREMENT —

FIG. 2B

U.S. Patent

Oct. 13,2015 Sheet 3 of 4 US 9,158,533 B2
200
OBTAIN A SET OF PATCHES
210
COMPUTE COHERENCY MEASUREMENT FOR EACH PATCH |’\J
299
A PATCH WITH A COHERENCY OUTPUT
MEASUREMENT BELOW A COHERENCY NEW SET OF
CRITERIA EXISTS? PATCHES
230
240’
| SELECT A PATCH FOR SPLITTING OR PATCHES FOR MERGING r\')
250A

MERGE SELECTED PATCHES

THAT THE SINGLE PATCH
MAXIMIZE A TOTAL
COHERENCY MEASUREMENT

INTO A SINGLE PATCH SUCH {—

250B

SPLIT THE SELECTED PATCH
INTO TWO OR MORE SUB-
PATCHES SUCH THAT THE

TWO OR MORE SUB-PATCHES

MAXIMIZE A TOTAL

COHERENCY MEASUREMENT

* 260°
|~

REPLACE PATCH WITH SUB-PATCHES / REPLACE PATCHES
WITH SINGLE PATCH

Y 270

COMPUTE COHERENCY MEASUREMENT FOR THE _—
GENERATED PATCH(ES)

FIG. 2C

U.S. Patent Oct. 13, 2015 Sheet 4 of 4 US 9,158,533 B2
300
\
APPARATUS 307
—~J
MEMORY
310 330
SOURCE CODE |~ PATCH COHERENCY |3
CALCUALTOR
315
PATCHES O DEPENDENCY |~3/0
320 IDENTIFIER
PATCH SPLITTER/)~
MERGER
302 305
— ~
PROCESSOR /O MODULE

FIG.

3

US 9,158,533 B2

1
MANIPULATING SOURCE CODE PATCHES

TECHNICAL FIELD

The present disclosure relates generally to computer pro-
gramming and, more particularly to source code patches.

BACKGROUND

A lot of software development is done using an iterative
modify-review process. A developer modifies the source
code—e.g., fixes a bug or adds a new feature. However, this
modification cannot go into the project immediately—before
it can be accepted, the modification needs to be reviewed—by
the whole team or by one of more managers of the project.

In certain organizations, face-to-face reviews, where the
developer presents his code to the reviewers, are possible. In
many other organizations, however, the developers are spread
across countries and time zones, or simply find it difficult to
coordinate a meeting, and the review is carried out from a
distance, such as via email: the developer packages his pro-
posed source-code modification in a patch file and sends this
change information to the reviewers. Specifically, this proce-
dure is common in peer-production models, such as open
source development.

A “source code patch”, or “patch”, in the present disclosure
is a set of modifications instructions to the source code that
are conceptually associated, such as all modifications are
aimed to a common goal such as to adding a feature or
resolving an existing bug. A patch may be provided as a text
file, such as generated using the diff software utility in Unix™
environment, as a revision in a source code control system,
such as CVS™, Rational ® ClearCase™, or the like.

In many occasions, the patch is accompanied by a human-
readable description of the change, to make it easier for the
reviewers to understand the patch. The reviewers can accept
the proposed changes as-is, or request that certain issues be
fixed, after which the developer should send the improved
patch for another round of review—until the patch is finally
accepted and “committed” into the main source code of the
project.

BRIEF SUMMARY

One exemplary embodiment of the disclosed subject mat-
ter is a computerized apparatus having a processor, the pro-
cessor is configured to: obtain a source code patch comprising
plurality of source code modification instructions with
respect to a source code; automatically split the source code
patch into plurality of sub-patches, wherein applying the
plurality of sub-patches on the source code in an order is
equivalent to applying the source code patch

Another exemplary embodiment of the disclosed subject
matter is a computer-implemented method performed by a
processor, the method comprising: obtaining a source code
patch comprising plurality of source code modification
instructions with respect to a source code; automatically split-
ting the source code patch into plurality of sub-patches,
wherein the plurality of sub-patches, if applied on the source
code in an order, provide an output that is equivalent to
applying the source code patch.

Yet another exemplary embodiment of the disclosed sub-
ject matter is a computer program product comprising: a
non-transitory computer readable medium retaining thereon
instructions that, when executed by a processor, are config-
ured to cause the processor to perform the steps of: obtaining
a source code patch comprising plurality of source code

10

15

20

25

30

35

40

45

50

55

60

65

2

modification instructions with respect to a source code; and
automatically splitting the source code patch into plurality of
sub-patches, wherein the plurality of sub-patches, if applied
on the source code in an order, provide an output that is
equivalent to applying the source code patch.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present disclosed subject matter will be understood
and appreciated more fully from the following detailed
description taken in conjunction with the drawings in which
corresponding or like numerals or characters indicate corre-
sponding or like components. Unless indicated otherwise, the
drawings provide exemplary embodiments or aspects of the
disclosure and do not limit the scope of the disclosure. In the
drawings:

FIG. 1 shows an illustration of computerized environment,
in accordance with some exemplary embodiments of the dis-
closed subject matter;

FIG. 2A-2C show flowchart diagrams of steps in a method
for automatic manipulating patches, in accordance with some
exemplary embodiments of the disclosed subject matter; and

FIG. 3 shows a block diagram of components of a comput-
erized apparatus for automatic manipulation of patches, in
accordance with some exemplary embodiments of the dis-
closed subject matter.

DETAILED DESCRIPTION

The disclosed subject matter is described below with ref-
erence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the subject matter. It will be
understood that blocks of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to one or more processors of a
general purpose computer, special purpose computer, a tested
processor, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a non-transient computer-readable medium that can direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the non-transient computer-readable medium pro-
duce an article of manufacture including instruction means
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a device. A computer or other programmable data pro-
cessing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

Seriously reviewing a patch, as opposed to just rubber-
stamping it, becomes very difficult as a patch becomes larger
than a hundred or so lines (modified, added or deleted). When
apatch grows to a thousand lines, the reviewer usually cannot

US 9,158,533 B2

3

understand the large patch as a whole, nor appreciate the
validity of every change within. Moreover, a short description
is no longer enough to describe the reasoning behind all of the
changes in the patch. Such large patches are common when a
large new feature is added to the code.

Generally speaking, it is easier to understand 10 patches,
each with 100 lines of functionally-related code and an expla-
nation of what this part of the code does, than to understand
one big 1000-line patch which does all sorts of things.

Therefore, projects which insist on a high-quality review
process, should insist that large changes be broken up into a
series of smaller patches.

Typically, the changes should be split into patches in a way
that after applying each patch in the sequence, the code com-
piles. Moreover, the changes should be split in such a way as
to make it easy to explain, and understand, each patch sepa-
rately. In some exemplary embodiments, the developer may
add a separate description to each of the small patches.

However, manually splitting large patches for review is a
very time-consuming process.

Therefore it is a technical problem dealt with by the dis-
closed subject matter to provide an automatic manner of
splitting a single patch into plurality of sub-patches. Another
technical problem is to merge two or more patches into a
single patch. Yet another technical problem is to provide a
coherent set of patches based on an initial set of patches, such
that a reviewer would be able to effectively review each patch.

One technical solution is to determine a coherency mea-
surement of each patch. The coherency measurement, as is
explained hereinbelow, may be affected by a variety of char-
acteristics. Based on the measured coherency, a patch is
selected to be split into sub-patches so as to increase a total
coherency measurement. Additionally or alternatively, two or
more patches are merged into an aggregative patch, so as to
increase the total coherency measurement.

In some exemplary embodiments, splitting and/or merging
may be performed iteratively until a desired coherency crite-
rion is achieved. In the present disclosure “modifying the
split” means modifying a set of patches to create an equivalent
modified set of patches by splitting and/or merging patches of
the original set.

Another technical solution is to determine an ordering of
the patches which, if followed when applying the patches on
the source code, each intermediate version does not introduce
a new compilation error that was not in the original source
code or the original patch or patches. In some exemplary
embodiments, the order may be determined based on a depen-
dency between the patches, such that if a first patch is depends
on a second patch, then the second patch will be ordered after
the first patch.

“Coherency measurement” is a score given for a patch that
is useful as a proxy value to indicate how coherent the patch
would beto a reviewer, how easy it would be for him to review
the patch, and the like. It will be noted that coherency mea-
surement is not related to how well the source code itself is
written, the complexity of the implemented algorithm, or a
similar feature of the modification. Coherency is affected by
many factors. Some exemplary factors are provided herein-
below.

SIZE OF PATCH: A size of a patch, such as a number of
source code lines it addressed (either in deleting, modifying
or adding) may affect coherency. There may be a desired
optimal patch size which is not too large, on the one hand, and
not too small on the other. In some exemplary embodiments,
a desired optimal patch size is of about one hundred source
code lines. In some exemplary embodiments, the size of patch

10

20

25

30

40

45

55

60

4

factor may be taken into account in comparison with the sizes
of other patches, such that a desired size distribution is sub-
stantially achieved.

PROXIMITY MEASUREMENT: Proximity of the modi-
fications of the patch may affect coherency. As an example,
we’d rather that a patch will modify ten continuous lines
rather than ten separate lines all over the source code within
different files. In some exemplary embodiments, proximity
within the same source code file may be measured in distance
between lines. In some exemplary embodiments, lines in the
same file are closer than lines in different files, files in differ-
ent directories may be deemed farther than files in the same
directory, and so on.

TEXTUAL SIMILARITY: Textual similarity of the modi-
fications may affect coherency. As an example, consider a
modification in which all copyright statements in the source
code were modified. Reviewing all these modifications
together would ease the reviewer and thus may be considered
to be more coherent. In some exemplary embodiments, tex-
tual similarity between two modifications is caused due to
similar comments in the source code, which would suggest
that the two are related in function as well and thus may be
preferably reviewed together.

DEPENDENCIES: dependencies between modifications
may affect coherency. In general, it may be desirable that
several dependent pieces of code appear in the same patch. As
an example, consider a patch that adds a certain variable. It
may be desirable that the same patch would also include the
new code that uses it. As another example, consider a patch
that induces a new method which calls another newly intro-
duced method, then it may be preferable that both newly
introduced methods would be introduced in the same patch.

SHARED DEPENDENCIES: shared dependencies
between patches may affect coherency. It may be desirable
that several pieces of code that have similar dependencies
appear in the same patch, as they are probably associated with
a similar reason of being introduced. For example, it may be
preferred that two pieces of new or modified code which use
the same preexisting variables or functions appear in the same
patch.

In some exemplary embodiments, one or more of the
above-mentioned parameters (e.g., patch, size, proximity,
text similarly, dependency and shared dependencies) or simi-
lar parameters may be used to compute a coherency measure-
ment. In some exemplary embodiments, the different factors
may be weighted together to compute the coherency mea-
surement.

In some exemplary embodiments, the different factors are
taken into account concurrently, with varying weights. As this
is the case, the maximal coherency measurement may be
achieved even though none of the factors is fully satisfied. For
example, a new variable and all the code that uses it might be
1000 lines, and in such a case it will make sense to lose a bit
of coherency score on the dependencies factors in order to
gain additional score due to the proximity factor, on the
desired size, and so on.

In some exemplary embodiments, the split may be modi-
fied while ensuring that no circular dependencies are intro-
duced. Two patches are said to be circularly dependent on
each other if a first patch is dependent (either directly or
indirectly via one or more intermediate patches) on a second
patch and vice versa. As an example, consider a first patch
defining a function named “foo” and using a function named
“bar”, while a second patch defining the “bar” function and
using the “foo” function. The first patch would introduce a
compilation error if applied before the second patch is
applied, and vice versa. The circular dependency may be

US 9,158,533 B2

5

avoided if the two patches are merged or split in a different
manner (e.g., definitions in a first patch and usage thereof in
a second patch).

It will be noted that Applicants are filing concurrently a
U.S. patent application entitled “SOURCE CODE
PATCHES”, which is hereby incorporated by reference in its
entirety. That application discloses a scheme of annotating a
source code to indicate plurality of patches. The disclosed
subject matter may be applied so as to generate annotations
accordingly. For example, the initial split may be provided
automatically based on the disclosed subject matter, and
manually edited such as disclosed in the Source Code Patches
application.

One technical effect is creating patches that are relatively
easier for a human reviewer to review. The patches may
contain code that addresses the same feature or bug fix, con-
secutive lines of code, and the like. Therefore, it may make
sense to explain what each patch does. In some exemplary
embodiments, patches do not comprise unrelated modifica-
tion that should be explained separately. Additionally or alter-
natively, each modification that is part of the explanation of a
patch is contained by the patch.

Another technical effect of the disclosed subject matter is
creating a split in which the sizes of the patches are statisti-
cally distributed around a predetermined size. In some exem-
plary embodiments, the split may balance between having too
large of patches and between having too many small patches.

Based on manually-created good splits it can be appreci-
ated that it is not desired that all patches must have the same
length, e.g., be exactly 100 lines long. In practice, some
patches are short (e.g., when a few changed lines were deter-
mined to be completely unrelated to anything else), and some
are long (e.g., when a long piece of code is added which
doesn’t make sense to split). For example, in one example are
2801 modified lines, which are split into 29 patches, on aver-
age 97 lines modified per patch. However, 6 of those patches
have less than 20 lines, and 6 of them have more than 200
lines. The distribution of patch length is close to an exponen-
tial distribution.

Yet another technical effect is avoiding introducing com-
pilation errors by applying the patches in accordance with the
determined order. In some exemplary embodiments, a patch
does not contain code that relies on a symbol that is only
defined in another patch that is ordered after it.

Referring now to FIG. 1 showing computerized environ-
ment in accordance with some exemplary embodiments of the
subject matter. Computerized environment 20 comprises sev-
eral developers (24, 28, 32). The developers may jointly
develop a software product, such as an open source program.
In some exemplary embodiments, the developers may be
located remotely from one another and communicate using
Computerized Network 36, such as the Internet. Each devel-
oper’s computer (e.g., 33, 34, 35) may be connected to Com-
puterized Network 36.

A modification made by Developer 32 may be reviewed,
tested, or otherwise checked by at least one other developer,
such as a manager, a review team, or the like.

In some exemplary embodiments, prior to transmitting his
patches for review, Developer 32 may use an automated too to
generate a split in accordance with the disclosed subject mat-
ter. Thereby, easing the review process. Additionally or alter-
natively, Reviewer 24 receiving one or more patches which
are not coherent may utilize the automated tool to generate a
different split for review.

10

15

20

25

30

35

40

45

50

55

60

6

Referring now to FIG. 2A showing a flowchart diagram of
a method for automatic manipulating patches, in accordance
with some exemplary embodiments of the disclosed subject
matter.

An initial split is obtained (Step 200) comprising one or
more patches. For each patch, a coherency measurement is
calculated (Step 210).

Loop 230 is performed iteratively until a predetermined
coherency criteria threshold is met (Step 235). The coherency
criteria threshold may be, for example, a minimal coherency
measurement for each patch, an average coherency measure-
ment for all patches, a combination thereof, or the like. In
some exemplary embodiments, user’s input may be used to
decide whether or not to continue performing Loop 230. The
user’s input may be based on the user’s appreciation of the
coherency of the split or on different factors.

If the coherency criterion is met, the set of patches is
outputted to a user (Step 299), such as by annotating the
source code, by creating patch files, by transmitting patch
files, by displaying the patches on a display, or the like.
Otherwise, steps 240-270 of Loop 230 may be performed.

In Step 240, a patch is selected for splitting. In some exem-
plary embodiments, the patch with the lowest coherency mea-
surement may be selected. Additionally or alternatively, the
patch to be split may be manually selected by a user.

In Step 250, the selected patch may be split into two or
more sub-patches. In some exemplary embodiments, each
modification is determined to be added to an existing sub-
patch or a new sub-patch based on a modification in a coher-
ency measurement to the sub-patch, modification to the total
coherency measurement of all sub-patches or the like. In
some exemplary embodiments, all possible combination of
splits into sub-patches may be generated, and, based on a
computation of coherency measurements, one split into sub-
patches may be selected. In some exemplary embodiments,
the split into sub-patches increase average coherency mea-
surement with respect to the patch. Additionally or alterna-
tively, the split into sub-patches may be selected so as to
increase, and optimally maximize, the total coherency mea-
surement of the entire split, with respect to the split prior to
splitting the patch into sub-patches.

In some exemplary embodiments, in addition to attempting
to increase coherency measurements, Step 255 may be per-
formed to ensure that no cyclic dependencies are introduced
by the split. As an example, each potential sub-patch may be
checked for cyclic dependencies. If a sub-patch is determined
to introduce a cyclic dependency, it may not be part of the
split.

In Step 260, the set of patches (such as the original set of
Step 200, or a modified set that was modified during previous
iterations of Loop 230) may be modified so as to include the
new sub-patches instead of the selected patch, thereby a new
split is determined in which the selected patch was split into
sub-patches.

In step 270, coherency measurements may be measured for
the sub-patches. Optionally, coherency measurements may
have been measured during Step 250 and need not be com-
puted again.

After step 270 is concluded, all patches of the new set
determined in Step 260 have computed coherency measure-
ments, and Step 235 may be performed once more in another
iteration of Loop 230.

Referring now to FIG. 2B showing steps for computing
coherency measurements of a patch, such disclosed in Step
210, in accordance with some exemplary embodiments of the
disclosed subject matter.

US 9,158,533 B2

7

In some exemplary embodiments, one or more of Steps
212, 214, 216, 218 and 220 may be performed to calculate
factors useful in computing the coherency measurement.

In Step 212, a number of modifications in the patch may be
determined. Additionally or alternatively, a number of lines of
source code in the patch may be determined. In some exem-
plary embodiments, Step 212 computes a size of patch mea-
surement. In some exemplary embodiments, the measure-
ment may be normalized, for example, to a number between
0 and 1, such that an optimal size is 1 and a worst size of 0. In
some exemplary embodiments, optimal size may be an inter-
mediate size between the largest possible size and the small-
est possible size, such as for example 100 source code lines.

In Step 214, proximity measurements of the modifications
may be determined and computed. In some exemplary
embodiments, proximity of all modifications may be used to
compute a single proximity measurement of the patch, which,
for example, may be normalized to a number between 0 and
1.

In Step 216, a textual similarity between the modifications
may be determined and computed. In some exemplary
embodiments, the measurement may be computed based on
similarity of each modification. Additionally or alternatively,
similarity may be computed based on similarity of each
source code line, such that in case a single modification
comprises several source code lines, each source code line is
checked individually. In some exemplary embodiments, tex-
tual similarity measurements of all modifications may be
used to compute a single textual similarity measurement of
the patch, which, for example, may be normalized to a num-
ber between 0 and 1.

In Step 218, dependencies between the modifications in the
patch may be computed. For example, for each modification
a number of other modifications that depend thereon and/or
number of other modifications that it depends on may be
counted to compute the measurement. In some exemplary
embodiments, all measured dependencies may be used to
compute a single dependency measurement for the patch,
which, for example, may be normalized to a number between
Oand 1.

In Step 220, shared dependencies between modifications in
the patch may be computed. In some exemplary embodi-
ments, for each modification, it may be determined how many
other modifications depend on, or have depending thereon, a
same patch, modification within a patch, use a same symbol
(e.g., variable defined elsewhere, function defined elsewhere,
or the like), have a same line of code depend on a symbol
definition by the modification, or the like. In some exemplary
embodiments, all measured shared dependencies may be
used to compute a single measured shared dependency for the
patch, which may, for example, be normalized to a number
between 0 and 1.

In step 224, a coherency measurement may be computed
based on the factors calculated in either of Steps 212-220. For
example, a weighted average of the factors may be calculated
so as to compute the coherency measurement. Thereby all
factors are taken into account in the coherency measurement,
while balancing a reduction in one factor by an increase in
another factor.

Referring now to FIG. 2C showing a flowchart diagram of
a method for automatic manipulating patches, in accordance
with some exemplary embodiments of the disclosed subject
matter. The method of FIG. 2C is similar to that of FIG. 2A
and comprises Steps 200,210,235, 299 and Loop 230 of FIG.
2A.

In step 240", similarly to Step 240 of FIG. 2A, a patch is
selected for processing. However, Step 240' involves an addi-

30

35

40

45

65

8

tional selection: whether to split a single patch into sub-
patches, or to merge two or more patches into an aggregated
patch. In case merging is selected, a set of two or more patches
to be merged are selected. The selection may be based on
coherency measurements and based on a determination
which operation would increase the coherency measurement
more. In some cases, heuristics may be determined in lieu of
actual computation of which operation provides the best out-
come.

In one exemplary embodiment, patches to be merged may
be patches having a smaller than optimal size and having a
coherency measurement below a predetermined threshold.
Based on the set of patches to be merged, one aggregated
patch is selected which comprises at least two of the patches,
but not necessarily all of them.

Based on the decision in Step 240", either Step 250A or
Step 2508 is performed.

In Step 250A the selected patches are merged into an
aggregated patch. The aggregated patch may be the patch
which increases the average coherency measurement by most
with respect to the original average coherency measurement
of the set of patches to be merged. In some exemplary
embodiments, several options of merging portions of the set
are considered, and based on coherency measurements
thereof one option is selected to be performed. In some exem-
plary embodiments, during the merging process, dependen-
cies are checked so as to avoid creating cyclic dependencies.

In Step 250B, which is similar to Step 250 of FIG. 2A, a
selected patch is split.

In Step 260", which is similar to Step 260 of FIG. 2A, the set
of patches is modified based on the splitting or merging
performed by Step 250A or Step 250B.

In Step 270", which is similar to Step 270 of FIG. 2A, and
in case it was not previously computed, coherency measure-
ments of the newly generated patches (either sub-patches or
aggregated patches) may be computed.

It will be noted that in some embodiments of the disclosed
subject matter, an initial patch may be provided and split into
unit patches, which may be merged to create the new split.
“Unit patches” are patches comprising a substantially small-
est block a patch and are not fragmented into smaller blocks.
For example, a unit block may be a block comprising one
statement, one source code line, or the like. As another
example, the size of the unit patches may be predetermined,
such as by a user, to any arbitrary number, such as two source
code lines, three code statements, or the like. In one embodi-
ment, Step 200 of FIG. 2C comprises obtaining an initial
patch and splitting the patch into unit patches, thereby obtain-
ing a set of patches which are to be merged into the new split.

Referring now to FIG. 3 showing a block diagram of com-
ponents of a computerized apparatus, in accordance with
some exemplary embodiments of the disclosed subject mat-
ter.

In some exemplary embodiments, Apparatus 300 may
comprise a Processor 302. Processor 302 may be a Central
Processing Unit (CPU), a microprocessor, an electronic cir-
cuit, an Integrated Circuit (IC) or the like. Processor 302 may
be utilized to perform computations required by Apparatus
300 or any of it subcomponents.

In some exemplary embodiments, Apparatus 300 may
comprise an Input/Output (I/O) Module 305 such as a
receiver, transmitter, transceiver, modem, an input device, an
output device or the like. In some exemplary embodiments,
1/O Module 305 is utilized to connect to an I/O device for
providing input by or output to a human user. I/O Module 305
may be operatively connected to a display, to a pointing

US 9,158,533 B2

9

device, a keyboard, or the like. It will however be appreciated
that the system can operate without human operation.

In some exemplary embodiments, Apparatus 300 may
comprise a Memory 307. Memory 307 may be computerized
memory, such as persistent or volatile, or a combination
thereof. For example, Memory 307 can be a Flash disk, a
Random Access Memory (RAM), a memory chip, an optical
storage device such as a CD, a DVD, or a laser disk; a mag-
netic storage device such as a tape, a hard disk, storage area
network (SAN), a network attached storage (NAS), or others;
asemiconductor storage device such as Flash device, memory
stick, or the like. In some exemplary embodiments, Memory
307 comprises several memory devices, such as for example
a RAM and a hard disk. In some exemplary embodiments,
Memory 307 may retain program code operative to cause
Processor 302 to perform acts associated with any ofthe steps
shown in FIG. 2A-2C or the like.

The components detailed below may be implemented as
one or more sets of interrelated computer instructions,
executed for example by Processor 302 or by another proces-
sor. The components may be arranged as one or more execut-
able files, dynamic libraries, static libraries, methods, func-
tions, services, or the like, programmed in any programming
language and under any computing environment.

In some exemplary embodiments, Memory 307 may retain
Source Code 310 as well as Patches 315. In some exemplary
embodiments, based on the operation of Apparatus 300,
Patches 315 may be modified from an original split. In some
exemplary embodiments, the patches may initially be repre-
sented as annotations in Source Code 310 and later on Patches
315 may be generated based on the annotations, such as by
Patch Generator (not shown).

Patch Splitter/Merger 320 may be configured to split one
patch into two or more sub-patches and/or merge two or more
patches into an augmented patch. In some exemplary embodi-
ments, Patch Splitter/Merger 320 is configured to perform
steps of the methods of FIG. 2A-2C for splitting and/or merg-
ing patches and thereby modifying a split. In some exemplary
embodiments, Patch Splitter/Merger 320 may be operatively
coupled to a Patch Coherency Calculator 330 in order to
determine which patches to merge and/or which patch to split,
and/or how to perform the splitting/merging.

In some exemplary embodiments, Patch Coherency Calcu-
lator 330 may be configured to calculate a coherency mea-
surement for a patch. In some exemplary embodiments, Patch
Coherency Calculator 330 may be configured to perform
steps of FIG. 2B.

In some exemplary embodiments, Dependency Identifier
340 may be configured to determine dependencies between
modifications and/or shared dependencies. In some exem-
plary embodiments, Dependency Identifier 340 may be uti-
lized by Patch Coherency Calculator 330 to compute factors
useful in coherency measurement calculation. In some exem-
plary embodiments, Dependency Identifier 340 may be used
by Patch Splitter/Merger 320 to avoid introducing cyclic
dependencies into the split.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart and
some of the blocks in the block diagrams may represent a
module, segment, or portion of program code, which com-
prises one or more executable instructions for implementing
the specified logical function(s). It should also be noted that,
in some alternative implementations, the functions noted in
the block may occur out of the order noted in the figures. For

10

15

20

25

30

35

40

45

50

55

60

65

10

example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may some-
times be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi-
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com-
puter instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

As will be appreciated by one skilled in the art, the dis-
closed subject matter may be embodied as a system, method
or computer program product. Accordingly, the disclosed
subject matter may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, the present disclosure may take the
form of a computer program product embodied in any tan-
gible medium of expression having computer-usable pro-
gram code embodied in the medium.

Any combination of one or more computer usable or com-
puter readable medium(s) may be utilized. The computer-
usable or computer-readable medium may be, for example
but not limited to, any non-transitory computer-readable
medium, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, device, or
propagation medium. More specific examples (a non-exhaus-
tive list) of the computer-readable medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Note that the computer-usable or
computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the
program can be electronically captured, via, for instance,
optical scanning of the paper or other medium, then com-
piled, interpreted, or otherwise processed in a suitable man-
ner, ifnecessary, and then stored in a computer memory. Inthe
context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system, appa-
ratus, or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either in baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, and the
like.

US 9,158,533 B2

11

Computer program code for carrying out operations of the
present disclosure may be written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s computer,
as a stand-alone software package, partly on the user’s com-
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiment was chosen and
described in order to best explain the principles of the disclo-
sure and the practical application, and to enable others of
ordinary skill in the art to understand the disclosure for vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

What is claimed is:

1. A computerized apparatus having a processor, said pro-
cessor is configured to:

obtain a source code patch comprising plurality of source

code modification instructions with respect to a source
code of a computer program, wherein the source code is
code developed by a developer, and the source code
patch can be manually reviewed; and

automatically split the source code patch into plurality of

sub-patches, wherein each sub-patch is also a patch and
comprises less instructions than the source code patch,
and wherein applying the plurality of sub-patches on the
source code in an order is equivalent to applying the
source code patch, comprising:
selecting a patch to split out of a set of patches based on
a measured score of the patches;
splitting the selected patch into at least two sub-patches;
and
repeating the selecting and the splitting with respectto a
new set, said new set comprising:
the set of patches and excluding the selected patch;
and
the at least two sub-patches,

wherein each sub-patch of the plurality of sub-patches can

be manually reviewed independently.

2. The computerized apparatus of claim 1, wherein the
automatic splitting comprises:

selecting a subset of the source code modification instruc-

tions of the source code patch based on a coherency
criterion; and

generating a sub-patch based on the subset of the source

code modification instructions.

3. The computerized apparatus of claim 1, wherein said
processor is further configured to: determine the order based
on dependencies between source code modification instruc-

20

25

30

35

40

45

50

55

60

65

12

tions of the sub-patches so as a first sub-patch is ordered
before a second sub-patch based on the second sub-patch
having a second source code modification instruction that
depends on a first source code modification instruction of the
first sub-patch.

4. The computerized apparatus of claim 2, wherein said
processor is further configured to:

compute a coherency measurement of the subset of the

source code modification instructions; and

compare the coherency measurement with the coherency

criterion.

5. The computerized apparatus of claim 4, wherein com-
puting the coherency measurement comprises counting a
number of source code lines in the subset.

6. The computerized apparatus of claim 4, wherein com-
puting the coherency measurement comprises determining
proximity of the source code modification instructions to
each other.

7. The computerized apparatus of claim 4, wherein com-
puting the coherency measurement comprises computing tex-
tual similarity between the source code modification instruc-
tions.

8. The computerized apparatus of claim 4, wherein com-
puting the coherency measurement comprises determining
dependencies between the source code modification instruc-
tions.

9. The computerized apparatus of claim 4, wherein com-
puting the coherency measurement comprises determining
shared dependencies of the source code modification instruc-
tions.

10. The computerized apparatus of claim 4, wherein the
coherency criterion prohibits creating a circular dependency
between a first and second patches, wherein the first and
second patches have circular dependency if the first patch
depends, directly or indirectly, on the second patch and the
second patch depends, directly or indirectly, on the first patch.

11. The computerized apparatus of claim 1,

whereby for each sub-patch of the plurality, applying the

sub-patch after applying all required sub-patches with
respect to the sub-patch is configured to provide a source
code version that does not introduce a compilation error
that would not exist if the source code patch would have
been applied, wherein required sub-patches are sub-
patches that the sub-patch depends on.

12. The computerized apparatus of claim 1, wherein source
code modification instructions are selected from the group
consisting of: a new source code line to be added, an existing
source code line to be deleted, and a modified source code line
to replace an existing source code line.

13. The computerized apparatus of claim 1, wherein the
automatic splitting is performed by splitting the source code
patch into a set of unit patches and merging the set of unit
patches into subsets thereby determining the plurality of sub-
patches.

14. A computer-implemented method performed by a pro-
cessor, the method comprising:

obtaining a source code patch comprising plurality of

source code modification instructions with respect to a
source code of a computer program, wherein the source
code is code developed by a developer, and the source
code patch can be manually reviewed;

automatically splitting the source code patch into plurality

of sub-patches, wherein each sub-patch is also a patch
and comprises less instructions than the source code
patch, and wherein the plurality of sub-patches, if

US 9,158,533 B2

13

applied on the source code in an order, provide an output

that is equivalent to applying the source code patch,

comprising:

selecting a patch to split out of a set of patches based on
a measured score of the patches;

splitting the selected patch into at least two sub-patches;
and

repeating the selecting and the splitting with respectto a
new set, said new set comprising:
the set of patches and excluding the selected patch;

and

the at least two sub-patches,

wherein each sub-patch of the plurality of sub-patches can

be manually reviewed independently.

15. The computer-implemented method of claim 14,
wherein said automatically splitting comprises:

selecting a subset of the source code modification instruc-

tions of the source code patch based on a coherency
criterion; and

generating a sub-patch based on the subset of the source

code modification instructions.

16. The computer-implemented method of claim 15 further
comprising:

determining the order based on dependencies between

source code modification instructions of the sub-patches
so as a first sub-patch is ordered before a second sub-
patch based on the second sub-patch having a second
source code modification instruction that depends on a
first source code modification instruction of the first
sub-patch.

17. The computer-implemented method of claim 15 further
comprising:

computing a coherency measurement of the subset of the

source code modification instructions; and

comparing the coherency measurement with the coherency

criterion.

18. The computer-implemented method of claim 17,
wherein computing the coherency measurement comprises at
least one step of the group consisting of:

counting a number of source code lines in the subset;

10

15

20

25

30

35

14

computing the coherency measurement comprises deter-
mining proximity of the source code modification
instructions to each other;

computing the coherency measurement comprises com-
puting textual similarity between the source code modi-
fication instructions;

computing the coherency measurement comprises deter-
mining dependencies between the source code modifi-
cation instructions; and

computing the coherency measurement comprises deter-
mining shared dependencies of the source code modifi-
cation instructions.

19. A computer program product comprising:

a non-transitory computer readable medium retaining
thereon instructions that, when executed by a processor,
are configured to cause the processor to perform the
steps of:

obtaining a source code patch comprising plurality of
source code modification instructions with respect to a
source code of a computer program, wherein the source
code is code developed by a developer, and the source
code patch can be manually reviewed; and

automatically splitting the source code patch into plurality
of sub-patches, wherein each sub-patch is also a patch
and comprises less instructions than the source code
patch, and wherein the plurality of sub-patches, if
applied on the source code in an order, provide an output
that is equivalent to applying the source code patch,
comprising:
selecting a patch to split out of a set of patches based on

a measured score of the patches;
splitting the selected patch into at least two sub-patches;
and
repeating the selecting and the splitting with respectto a
new set, said new set comprising:
the set of patches and excluding the selected patch;
and

the at least two sub-patches, wherein each sub-patch of the
plurality of sub-patches can be manually reviewed inde-
pendently.

